Product Description

Manufacturer Price Customized Metal Bevel Spur Differential Steering Spline Plastic
Nylon Stainless Steel Gear Small Worm Gear

Material  1) Aluminum: AL 6061-T6, 6063, 7075-T etc.
 2) Stainless steel: 303, 304, 316L, 17-4(SUS630) etc.
 3) Steel: 4140, Q235, Q345B, 20#, 45# etc.
 4) Titanium: TA1, TA2/GR2, TA4/GR5, TC4, TC18 etc.
 5) Brass: C36000 (HPb62), C37700 (HPb59), C26800 (H68), C22000(H90) etc.
 6) Copper, Bronze, Magnesium alloy, Delrin, POM, Acrylic, PC, etc.
Finsh  Sandblasting, Anodize color, Blackenning, Zinc/Nickl Plating, Polish.
 Power coating, Passivation PVD, Titanium Plating, Electrogalvanizing.
 Electroplating chromium, Electrophoresis, QPQ(Quench-Polish-Quench).
 Electro Polishing, Chrome Plating, Knurl, Laser etch Logo, etc.
Main Equipment  CNC machining center(Milling), CNC Lathe, Grinding machine.
 Cylindrical grinder machine, Drilling machine, Laser cutting machine, etc.
Drawing format  STEP, STP, GIS, CAD, PDF, DWG, DXF etc or samples.
Tolerance  +/-0.01mm ~ +/-0.05mm
Surface roughness  Ra 0.1~3.2
Inspection  Complete inspection lab with Micrometer, Optical Comparator, Caliper Vernier, CMM.
 Depth Caliper Vernier, Universal Protractor, Clock Gauge, Internal Centigrade Gauge.
Capacity  CNC turning work range: φ0.5mm-φ150mm*300mm.
 CNC milling work range: 510mm*1571mm*500mm.

About Runsom
    Runsom, a company specializing in rapid prototyping and manufacturing, has decades of experience in
CNC machining, 3D printing, injection molding, sheet metal fabrication, and die casting. Our engineering
team with extensive knowledge and experience utilizes the latest prototyping technologies and top-notch
machining equipment to provide comprehensive services to satisfy global customers’ requirements,
timescales, and specific needs. We are able to take your concepts or designs to reality production in just
days with our advanced machining technologies, extensive manufacturing experience, and a wealth of
premium materials.

Our Mission
   Runsom Precision was established to give support to companies in the industries fields who continually
need to reduce their costs and meet tight deadlines. Our purpose is to ensure customer satisfaction by
providing first-class project management control and problem-free products.

                                                                                               Get a Quote

Q1: What’s kinds of information you need for quote?
A1: Kindly please provide the 2D/3D drawings (PDF/DWG/DXF/IGS/STP/SLDPRT/etc) and advise material
, finish, quantity for quoting.

Q2: What is your MOQ?
A2: MOQ depends on our client’s needs, besides, we welcome trial order before mass-production.

Q3: What is the lead time?
A3: Depending on your specific project and quantity.

Q4: Available for customized design drawings?
A4: Yes, please send the technical drawings to us. It’s better if you can send both 2D and 3D drawings if
you have.

Q5: If the parts we purchase from your company are not good, what can we do?
A5: Please feel free to contact us after you got the products. Kindly send us some photos, we will
feedback to our engineers and QC departments and solve the problems ASAP.

Q6: Are you a manufacturer or trading company?
A6: We are a manufacturer, we are located in HangZhou, China.

Q7: Will my drawings be safe after sending to you?
A7: Yes, we will keep them well and not release to third party without your permission.


Application: Motor, Electric Cars, Motorcycle, Machinery, Marine, Toy, Agricultural Machinery, Car, Auto,Motorcycle,Aviation,Electonic,Medical,Home
Hardness: According to The Drawing
Gear Position: According to The Drawing
Manufacturing Method: Machining,Milling,Turning,5axis,etc
Toothed Portion Shape: Custom
Material: Aluminum,Steel,Brass,Hardware,etc
US$ 5/Piece
1 Piece(Min.Order)

Request Sample



Customized Request

worm gear

How does a worm gear impact the overall efficiency of a system?

A worm gear has a significant impact on the overall efficiency of a system due to its unique design and mechanical characteristics. Here’s a detailed explanation of how a worm gear affects system efficiency:

A worm gear consists of a worm (a screw-like gear) and a worm wheel (a cylindrical gear with teeth). When the worm rotates, it engages with the teeth of the worm wheel, causing the wheel to rotate. The main factors influencing the efficiency of a worm gear system are:

  • Gear Reduction Ratio: Worm gears are known for their high gear reduction ratios, which are the ratio of the number of teeth on the worm wheel to the number of threads on the worm. This high reduction ratio allows for significant speed reduction and torque multiplication. However, the larger the reduction ratio, the more frictional losses occur, resulting in lower efficiency.
  • Mechanical Efficiency: The mechanical efficiency of a worm gear system refers to the ratio of the output power to the input power, accounting for losses due to friction and inefficiencies in power transmission. Worm gears typically have lower mechanical efficiency compared to other gear types, primarily due to the sliding action between the worm and the worm wheel teeth. This sliding contact generates higher frictional losses, resulting in reduced efficiency.
  • Self-Locking: One advantageous characteristic of worm gears is their self-locking property. Due to the angle of the worm thread, the worm gear system can prevent the reverse rotation of the output shaft without the need for additional braking mechanisms. While self-locking is beneficial for maintaining position and preventing backdriving, it also increases the frictional losses and reduces the efficiency when the gear system needs to be driven in the opposite direction.
  • Lubrication: Proper lubrication is crucial for minimizing friction and maintaining efficient operation of a worm gear system. Inadequate or improper lubrication can lead to increased friction and wear, resulting in lower efficiency. Regular lubrication maintenance, including monitoring viscosity, cleanliness, and lubricant condition, is essential for optimizing efficiency and reducing power losses.
  • Design and Manufacturing Quality: The design and manufacturing quality of the worm gear components play a significant role in determining the system’s efficiency. Precise machining, accurate tooth profiles, proper gear meshing, and appropriate surface finishes contribute to reducing friction and enhancing efficiency. High-quality materials with suitable hardness and smoothness also impact the overall efficiency of the system.
  • Operating Conditions: The operating conditions, such as the load applied, rotational speed, and temperature, can affect the efficiency of a worm gear system. Higher loads, faster speeds, and extreme temperatures can increase frictional losses and reduce overall efficiency. Proper selection of the worm gear system based on the expected operating conditions is critical for optimizing efficiency.

It’s important to note that while worm gears may have lower mechanical efficiency compared to some other gear types, they offer unique advantages such as high gear reduction ratios, compact design, and self-locking capabilities. The suitability of a worm gear system depends on the specific application requirements and the trade-offs between efficiency, torque transmission, and other factors.

When designing or selecting a worm gear system, it is essential to consider the desired balance between efficiency, torque requirements, positional stability, and other performance factors to ensure optimal overall system efficiency.

worm gear

How do you calculate the efficiency of a worm gear?

Calculating the efficiency of a worm gear involves analyzing the power losses that occur during its operation. Here’s a detailed explanation of the process:

The efficiency of a worm gear system is defined as the ratio of output power to input power. In other words, it represents the percentage of power that is successfully transmitted from the input (worm) to the output (worm wheel) without significant losses. To calculate the efficiency, the following steps are typically followed:

  1. Measure input power: Measure the input power to the worm gear system. This can be done by using a power meter or by measuring the input torque and rotational speed of the worm shaft. The input power is usually denoted as Pin.
  2. Measure output power: Measure the output power from the worm gear system. This can be done by measuring the output torque and rotational speed of the worm wheel. The output power is usually denoted as Pout.
  3. Calculate power losses: Determine the power losses that occur within the worm gear system. These losses can be classified into various categories, including:
    • Mechanical losses: These losses occur due to friction between the gear teeth, sliding contact, and other mechanical components. They can be estimated based on factors such as gear design, materials, lubrication, and manufacturing quality.
    • Bearing losses: Worm gears typically incorporate bearings to support the shafts and reduce friction. Bearing losses can be estimated based on the bearing type, size, and operating conditions.
    • Lubrication losses: Inadequate lubrication or inefficient lubricant distribution can result in additional losses. Proper lubrication selection and maintenance are essential to minimize these losses.
  4. Calculate efficiency: Once the power losses are determined, the efficiency can be calculated using the following formula:

Efficiency = (Pout / Pin) * 100%

The efficiency is expressed as a percentage, indicating the proportion of input power that is successfully transmitted to the output. A higher efficiency value indicates a more efficient gear system with fewer losses.

It is important to note that the efficiency of a worm gear can vary depending on factors such as gear design, materials, lubrication, operating conditions, and manufacturing quality. Additionally, the efficiency may also change at different operating speeds or torque levels. Therefore, it is advisable to consider these factors and conduct efficiency calculations based on specific gear system parameters and operating conditions.

worm gear

What are the applications of a worm gear?

A worm gear is a type of gear mechanism that consists of a threaded worm and a mating gear, known as the worm wheel or worm gear. It is widely used in various applications where a high gear ratio and compact size are required. Here are some specific applications of worm gears:

  1. Elevators and Lifts: Worm gears are extensively used in elevator and lift systems. They provide the necessary gear reduction to lift heavy loads while maintaining smooth and controlled vertical movement.
  2. Steering Systems: Worm gears are commonly found in automotive steering systems. They convert the rotational motion of the steering wheel into the linear motion required to turn the vehicle’s wheels.
  3. Conveyors: Worm gears are employed in conveyor systems, particularly for applications that require moving materials at an inclined angle. They offer the necessary torque and control for efficient material handling.
  4. Machine Tools: Worm gears are used in machine tools such as milling machines, lathes, and grinders. They enable precise control over the machine’s speed and feed rate, resulting in accurate machining operations.
  5. Packaging Equipment: Worm gears are utilized in packaging machinery to drive various components such as conveyor belts, rotary tables, and filling mechanisms. They ensure synchronized and efficient packaging processes.
  6. Rotary Actuators: Worm gears find applications in rotary actuators, which are used in robotics, industrial automation, and valve control. They provide precise positioning and torque output for rotational movements.
  7. Textile Machinery: Worm gears are employed in textile machinery for applications like yarn winding, loom mechanisms, and fabric tensioning. They ensure smooth and controlled movement of threads and fabrics.
  8. Raising and Lowering Mechanisms: Worm gears are used in raising and lowering mechanisms, such as those found in stage platforms, scissor lifts, and adjustable workbenches. They enable controlled vertical movement with high load capacity.

These are just a few examples of the applications of worm gears. Their unique characteristics, including high gear reduction ratios, compact size, and self-locking capabilities, make them suitable for a wide range of industries and mechanical systems.

China supplier Manufacturer Price Customized Metal Bevel Spur Differential Steering Spline Stainless Steel Gear Small Worm Gear straight bevel gearChina supplier Manufacturer Price Customized Metal Bevel Spur Differential Steering Spline Stainless Steel Gear Small Worm Gear straight bevel gear
editor by CX 2023-11-03


Brass Worm Gear

As one of the brass worm gear manufacturers, suppliers, and exporters of mechanical products, We offer brass worm gears and many others.

Please get in touch with us for details.

Manufacturer supplier exporter of brass worm gear.

Recent Posts